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This article presents the design and simulations of the expected performance of a 

novel two-dimensional x-ray shearing interferometer. This interferometer uses crossed 

phase gratings in a single plane and is capable of operation over a wide range of energies 

extending from several hundred eV to tens of keV by varying the grating material and 

thickness. This interferometer is insensitive to vibrations and, unlike Moire’

deflectometers implemented in the hard x-ray regime, recovers the full two-dimensional 

phase profile of the x-ray beam rather than the gradient in only one dimension. 
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1. INTRODUCTION

A number of interferometers have been implemented in the hard x-ray regime to measure 

either the phase or the gradient of the phase in the case shear interferometers and Moire’

deflectometers. The first hard x-ray interferometer implementation used three partially 

transmitting Bragg crystals and was manufactured from a highly pure single silicon 

crystal to minimize vibrational effects [1]. More recently a one-dimensional shear 

interferometer based on Lloyd’s mirror has also been demonstrated [2]. Additionally, 

several instruments based on the principles of Moire’ deflectometery have been realized 

which measure the one-dimensional gradient in the hard x-ray wave-front [3,4]. These 

latter instruments are far less susceptible to vibrations than the phase-measuring 

interferometers or the one-dimensional shear interferometer based on a Lloyd’s mirror. 

These latter instruments, as implemented however, can only measure the one-dimensional 

gradient of the phase and as such require multiple measurements with the grating rotated 

between measurements to determine the orthogonal gradients required to reconstruct the 

wave-front.

In this article a two-dimensional shearing interferometer, based on two orthogonal 

phase gratings, is introduced which can measure the two-dimensional wave-front gradient 

in the hard x-ray regime. This instrument measures the two-dimensional wave-front 

gradient in a single measurement and does not require multiple measurements or 

movement of the grating structure. The two-dimensional grating can be made on a single 

membrane or cut from a single thin film, making it insensitive to both vibrations and 

alignment. A two-dimensional shearing interferometer based on crossed phase gratings 
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has been implemented previously in the visible regime [5]. In this case the crossed phase 

gratings were formed by etching a chess board pattern into glass.

2. DESIGN of the ORTHOGONAL PHASE GRATING for the 
SHEARING INTERFEROMETER

The essential component in this two-dimensional shearing interferometer is a crossed 

phase grating which produces intensity spots on a detector whose relative shifts 

determine the local two-dimensional wave-front gradient. When a periodic structure is 

placed in a beam, images of that structure will appear downstream of the object as 

discovered by Talbot [6]. More precisely if a phase grating is placed in the beam 

composed of alternating equal width bars of 0 and  phases, then the field at the location 

of the phase structure will be reproduced a distance dT = d2/2 downstream of the phase 

structure. In this expression, dT is the Talbot distance, d represents the pitch of the phase 

grating and  is the wavelength of the source. At a distance equal to dT/4 and 3dT/4, the 

initial phase pattern across the beam has become uniform and the initially uniform 

intensity has acquired the periodic structure of the initial phase pattern with the pitch of 

the intensity pattern equal to half that of the original phase grating. At a distance of dT/2, 

the phase pattern is reversed from the original phase grating and the intensity pattern is 

uniform such that this particular location can not be used for wave-front sensing. In 

practice, the intensity pattern has well defined spots for propagation distances between 

dT/16 and 7dT/16 and between 9dT/16 and 15dT/16. The two applications simulated below 

were performed at a distance of ~ dT/13 where the intensity pattern from the initial phase 

profile has produced well defined spots.
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Each of the two orthogonal gratings is designed such that the even orders of the 

grating are eliminated. In order for the efficiency of the even orders, greater than the m=0 

order, of a transmission grating to go to zero at x-ray wavelengths, the width of the slits 

must be half of the grating pitch [7,8]. In addition for the efficiency of the m=0 order of 

the grating to go to zero, there must be negligible absorption and the bar structure of the 

grating must produce a shift of  radians relative to the slits of the grating [7,8]. At x-ray 

wavelengths the index of refraction is expressed as n = (1-)+i, where 1-gives rise to a 

phase shift as the x-rays pass through the sample and the  term results in absorption. The 

length for a  phase shift, x, can be expressed as x = /(2 and the absorption length, 

x, can be written as x = /(4. Fig. 1 represents the attenuation and  phase shift 

lengths for several elements as a function of x-ray energy. As can be seen in Fig. 1, the 

light elements can easily be made to provide the desired  phase shift and yet not provide 

any significant absorption of the x rays. As a specific example we take Carbon and go 

through the design for a 5 keV phase grating. For this example the width of the bar 

structure in the grating is identical to that of the slits such that all even orders above m=0 

go to zero. The Carbon bars are made with a thickness of 6.74 m such that a  phase 

shift is achieved for 5 keV x rays and the efficiency of the m=0 order approaches zero. 

The order efficiency as a function of x-ray energy for this grating is then shown in Fig. 2. 

At the design energy of 5 keV, the efficiency of the m=0 order approaches zero and the 

efficiency of the m = +1 order is approximately 40 %. The efficiency of the odd orders 

goes approximately as 1/m2 with the m=+3 and +5 shown in Fig. 2 [7,8].
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3. SIMULATED PERFORMANCE of the 2-D X-RAY SHEARING 
INTERFEROMETER

Two applications of the shearing interferometer are presented below, both tailored to the 

next generation of hard x-ray free electron lasers such as the Linac Coherent Light 

Source(LCLS) [9], the Spring-8 Compact SASE Source(SCSS) [10], and the European 

X-Ray Free Electron Laser(Euro XFEL) [11]. The LCLS source will have a high 

transverse coherence, ~80%, a narrow bandwidth, E/E~0.1%, and operate over a range 

of x-ray energies, 0.8 to 8 keV in the fundamental. In both simulations, an x-ray energy 

of 0.8 keV was assumed with an x-ray beam diverging with an f/# of 3000, where the f/# 

is defined as the diameter of the focal length of the focusing optic divided by the diameter 

of the x-ray beam. The phase gratings were simulated with bar and slit widths equal to 

12.5 m, thus producing 80 spots across the detector which was located 15 mm past the 

plane containing the orthogonal phase gratings. The first application presented involves 

measuring the electric field at the shearing interferometer and then propagating this field 

back to focus to determine the far-field intensity pattern of the x-ray beam. The second 

application involves placing a phase object half way between the x-ray focus and the 

crossed phase gratings and determining the phase of the object based on the field 

measurement by the shearing interferometer. The latter example assumes the wave-front 

of the x-ray source is reproducible. The geometry of both simulations is shown in Fig. 3 

below. In the former application there is no phase object placed in the beam. In both 

simulations the two orthogonal phase gratings are placed 3 meters from the focus of the 

x-ray source where the beam has expanded to a diameter is 1 mm. In both of these 

applications there is a significant focus term to the phase which must be accurately 
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recovered in order to recover the phase of an object placed in the beam or the residual 

aberrations in the beam itself. These simulations used an iterative reconstruction 

technique to accurately recover the small phase perturbations within the large focus term.

The iterative reconstruction process is very similar to a closed-loop adaptive 

optics system. In a typical closed-loop adaptive optics application, an initial electric-field 

defined by a phase and amplitude enters an optical system and is relay imaged onto a 

deformable mirror and subsequently onto a wave-front sensor. In the case of a two-

dimensional shearing interferometer wave-front sensor, a two-dimensional grating would 

be used to form spots on the wave-front sensor camera. The difference between the 

locations of these spots and a set of reference spots, generated when a nearly perfect 

wave-front enters the system, is used to determine the local gradients in the wave-front. 

The wave-front is then reconstructed from these local gradients. Through the use of a 

gain factor, a percentage of the calculated wave-front is used to change the shape of the 

deformable mirror such that the measured spots from subsequent measurements of the 

electric field approach the reference spot locations and hence the wave-front approaches a 

nearly perfect wave-front.

A flow chart of the algorithm used in the simulations below is shown in Figure 4. 

The primary difference between the closed-loop application described above and the 

iterative reconstruction process is that rather than driving the solution to reference 

centroid locations with the use of a deformable mirror, the phase is driven to the initial 

measured centroid locations using a simulation loop. This is accomplished numerically 

by using the reconstructed phase to form simulated shearing interferometer spots on a 

simulated wave-front sensor camera and then comparing the numerically formed spots to 
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the initial measured spots. The gradients are then calculated from the differences between 

the simulated spot locations and the measured spot locations. Although the initial 

measured spots contain detector noise, no noise is added to the simulated shearing 

interferometer spots. The wave-front is reconstructed from these gradients and a numeric 

gain factor is used to add a percentage of the reconstructed wave-front to the composite 

wave-front from the previous iterations. In this approach the simulated shearing 

interferometer spot locations are driven towards the measured spot locations and hence 

the reconstructed wave-front is driven to the initial wave-front being measured. Using 

this technique errors in the boundary conditions can be significantly reduced and large 

aberrations can be reconstructed with very low phase variance between the initial phase 

and the reconstructed phase as shown in the following two sections.

Both simulations discussed below utilize wave optics simulations to transport the 

electric field between the various planes. The grating structure and the phase object are 

added to the electric field after the field has been propagated to their respective location. 

The wave-front is reconstructed from the simulated spots by first locating the 

displacement of each of the spots with a center-of-mass centroider and then 

reconstructing the resulting gradients  with a multigrid wave-front reconstructor [12,13].

A. Reconstruction of the far-field intensity pattern

The first application is motivated by the desire to know the far-field intensity pattern that 

is being used to scatter off molecules in an attempt to characterize the structure of protein 

molecules that are not easily grown as crystals. The protein structure is determined by 

measuring the diffraction pattern from single molecules many times to build up all 

orientations of the molecules and then through tomographic reconstruction techniques to 
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recover the protein’s three-dimensional structure. In this case the x-ray beam is focused 

and the shearing interferometer is placed 3 meters downstream of focus. The beam 

propagates 15 mm past the phase gratings where the resultant spots are formed on the 

detector. The intensity of the spots provide the local intensity of the field and the 

displacement of the spots determines the phase of the field at the phase gratings. The 

reconstructed field is then propagated back to focus to recover the far-field pattern of the 

x-ray beam. For this application an initial phase aberration was placed on the x-ray beam 

as shown in Fig. 5a below. The resultant far-field pattern with that phase aberration is 

shown in Fig. 5b. After the phase of the beam has been determined by reconstructing the 

local gradients from the spot displacements, the field is back-propagated to focus where 

the far-field intensity pattern is formed as shown in Fig. 5c. 

B. Reconstruction of a phase object

The second application involves using an x-ray source to determine the phase of an 

unknown object placed in the beam. This application is also done with an expanding 

beam which is much more difficult than a collimated beam due to the large focus term 

which dominates the phase measurement. In this case a star-shaped phase object is placed 

midway between the focus of the x-ray beam and the crossed phase gratings. Fig. 6a and 

6b represents the intensity pattern at the crossed phase gratings and 15 mm past the 

crossed phase gratings, respectively, with no phase object in the beam. Fig. 6c and 6d 

represents the intensity pattern at the crossed phase gratings and 15 mm past the crossed 

phase gratings, respectively, with the star-shaped phase object in the beam as shown in 

Fig. 7a. Based on the spot patterns in Fig. 6b and 6d, the local gradients are determined, 
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the phase reconstructed, the amplitude solved for and the fields at the entrance to the 

crossed phase gratings determined. The resultant fields are then back-propagated to the 

location where the phase object was placed in the beam. The two phases are then 

subtracted and the resultant phase unwrapped using a multigrid algorithm [13] to 

determine the phase of the object. The results of this phase recovery process are shown in 

Fig. 7b below. Fig. 7c shows an azimuthal lineout at a radius of one fourth the object’s 

diameter for both the actual, black line, and reconstructed phases, dashed gray line, in 

Fig. 7a and 7b respectively. This lineout illustrates that the amplitude and spatial 

frequency of the phase object are quantitatively reproduced. There is a slight high 

frequency degradation as evidenced by the slope of the edges in the reconstructed phase 

vs. the actual phase and a low frequency noise term present in the reconstructed phase. 

The mean error in the full-width-at-half-maximum and the amplitude between the 

reconstructed vs. applied phase bars shown in Fig. 7c was 13 % and 0.4 %, respectively.
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FIGURE CAPTIONS

Figure 1 Attenuation and  phase shift lengths for several elements as a function of x-ray 

energy. 

Figure 2 Spectral order efficiency for a transmission grating composed of 6.74 m thick 

Carbon bars. This thickness provides the required pi phase shift at 5 keV such that the 

zero order of the grating approaches zero.

Figure 3 Simulation geometry used in both reconstructing the far-field and also in 

retrieving the phase of an object placed in the x-ray beam. 

Figure 4 Flowchart for the open-loop iterative application.

Figure 5 Reconstructed far-field spot using the shearing interferometer.

Figure 6 Intensity profiles at the entrance and 15 mm after having passes through a two-

dimensional crossed phase grating.

Figure 7 Retrieved phase object. Fig. 6a shows the actual phase of the object placed in the 

expanding x-ray beam and Fig. 6b shows the reconstructed phase. Fig. 6c shows an 

azimuthal lineout through the two phases at a radius of one fourth the object’s diameter.
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